How to Al (Almost) Anything Lecture 6 – Crossmodal Learning

Paul Liang

Assistant Professor
MIT Media Lab & MIT EECS

https://pliang279.github.io ppliang@mit.edu @pliang279

Assignments for This Coming Week

For project:

- Instructions for midterm assignment posted on piazza
- Midterm report due April 1 (Tuesday), presentations April 3 (Thursday)
- For April 3 (Thursday), class from 1-3pm (we will be flexible when you attend and present)
- Finalized main ideas and experimental setup, have datasets and baseline models working, detailed error analysis, initial progress towards implementing new ideas.

Reading assignment due tomorrow Wednesday (3/19).

This Thursday (3/20): fourth reading discussion on multimodal interactions.

- 1. Ten myths of multimodal interaction
- 2. Mixture-of-experts fusion

Today's lecture

- Basics of cross-modal transfer
- 2 Cross-modal transfer via fusion
- 3 Cross-modal transfer via alignment
- 4 Cross-modal transfer via translation

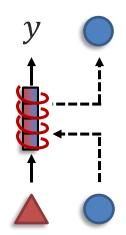
Transference

Definition: Transfer knowledge between modalities, usually to help the primary modality which may be noisy or with limited resources

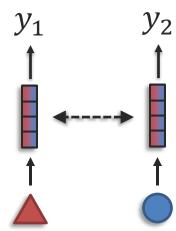
Sub-challenges:

Transfer y ↑ ↑ ↑

Co-learning

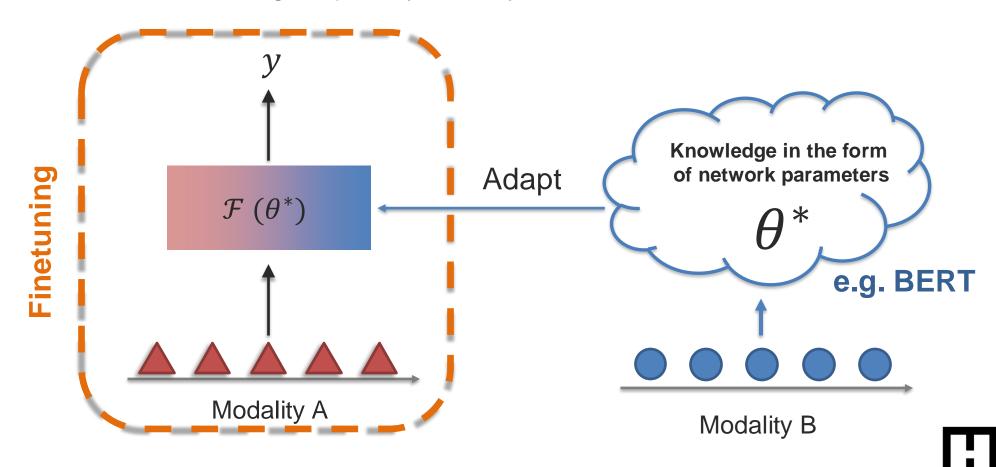


Model Induction

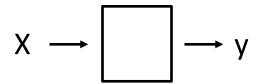


Part 1: Transfer via Pretrained Models

Definition: Transferring knowledge from large-scale pretrained models to downstream tasks involving the primary modality.



Supervised learning



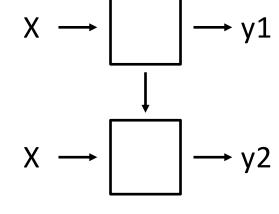
Multimodal (supervised) learning

$$X1 \rightarrow Y$$

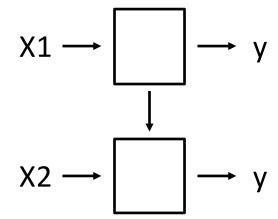
Multitask learning

$$x \rightarrow \boxed{} < \frac{y1}{y2}$$

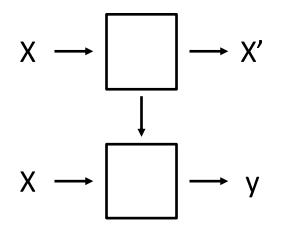
Transfer learning



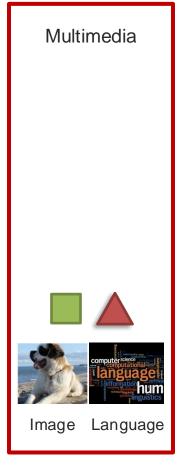
Cross-modal learning

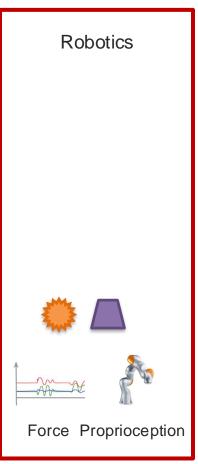


Unsupervised/self-supervised pre-training



Humans Language Speech Gestures





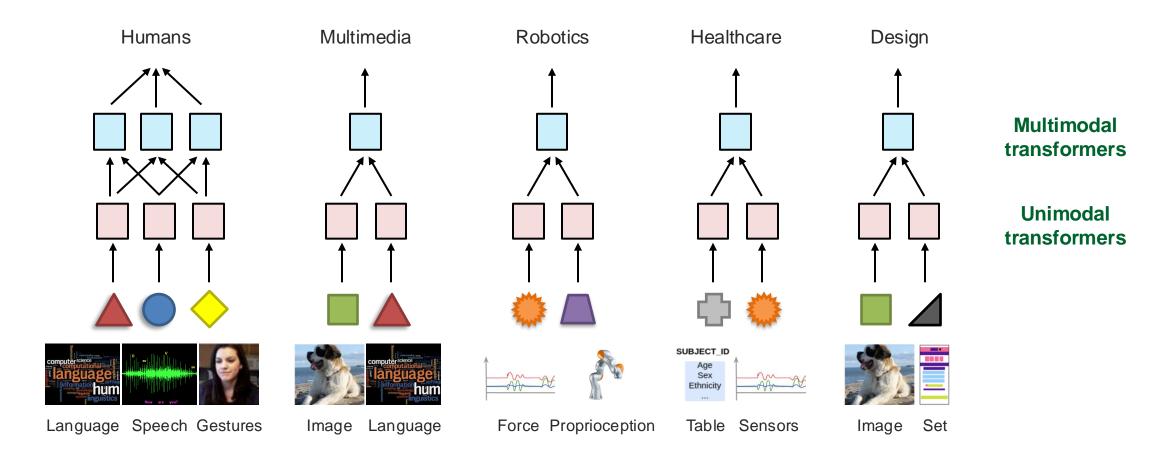
Healthcare Design

Generalization across modalities and tasks Important if some tasks are low-resource

Table Sensors

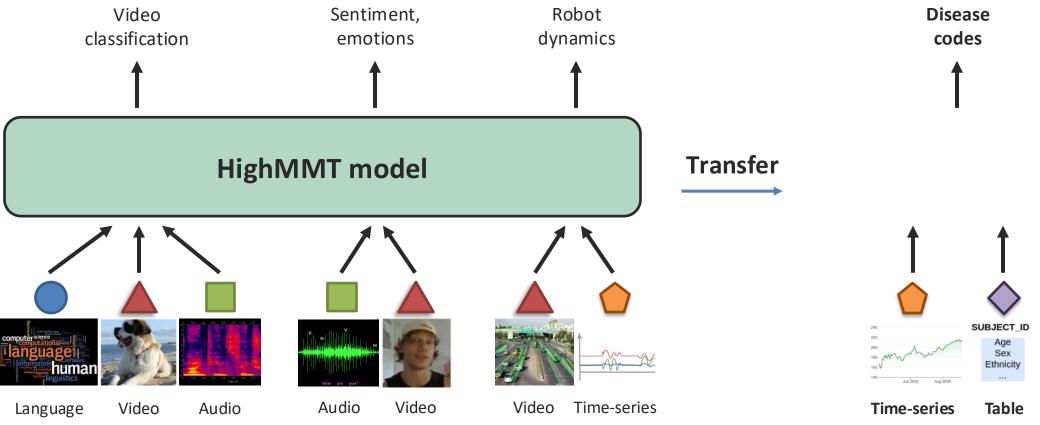
Set

Image

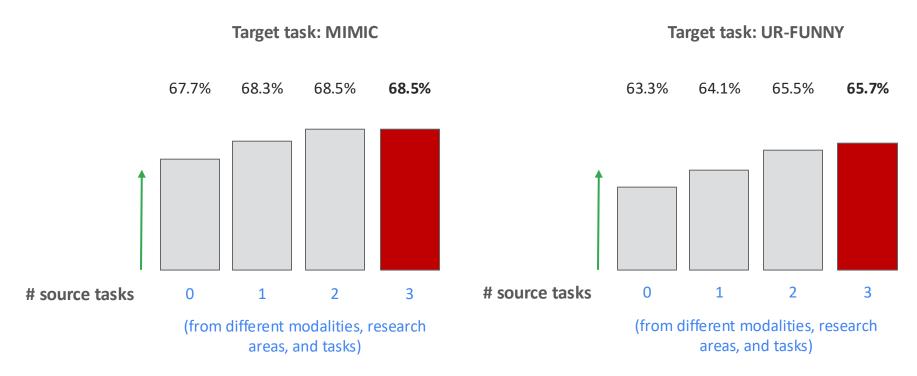


High-Modality Multimodal Transformer

Transfer across partially observable modalities



Transfer across partially observable modalities

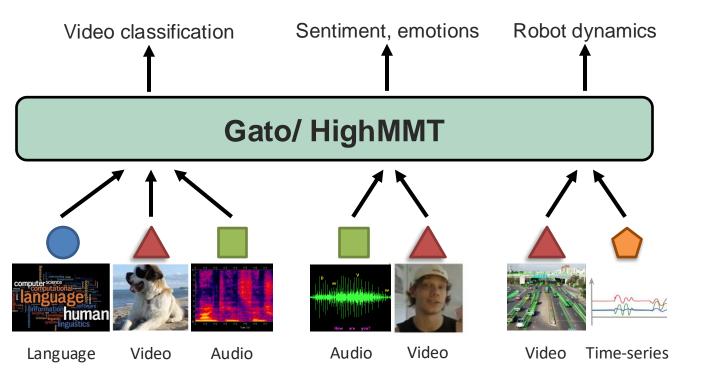


Achieves both multitask and transfer capabilities across modalities and tasks

High-Modality Models

Some implicit assumptions:

- All modalities can be represented as sequences without losing information.
- Dimensions of heterogeneity can be perfectly captured by modality-specific embeddings.
- Cross-modal connections & interactions are shared across modalities and tasks.

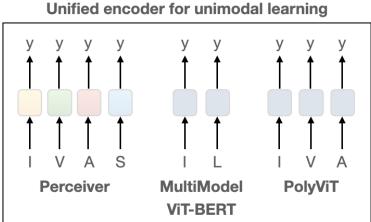


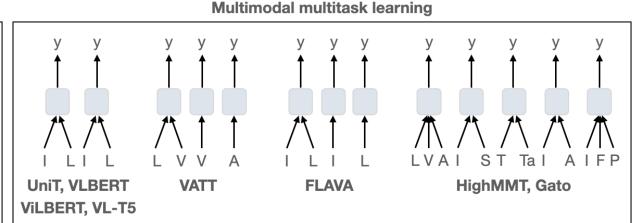
Shared multimodal model?

Modality-specific embeddings?

Standardized input sequence?

Many more dimensions of transfer





I: image

V: video

A: audio

S: set

L: language

T: time-series

Ta: tables

F: force sensor

P: proprioception sensor

common architecture

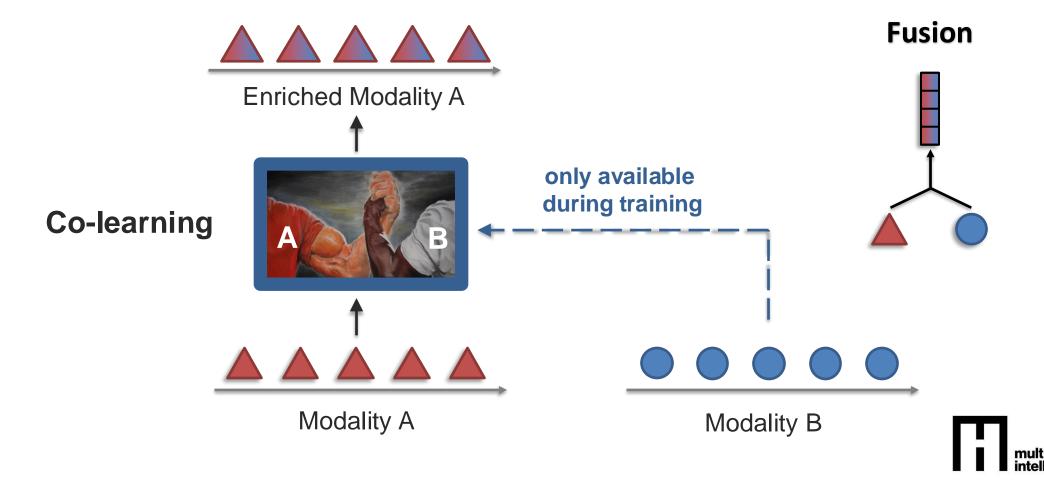
parameter sharing

Open challenges:

- Low-resource: little downstream data, lack of paired data, robustness (next section)
- Beyond language and vision
- Settings where SOTA unimodal encoders are not deep learning e.g., tabular data
- Complexity in data, modeling, and training
- Interpretability (next section)

Part 2: Co-learning

Definition: Transferring information from secondary to primary modality by sharing representation spaces between both modalities.



Co-learning via Fusion

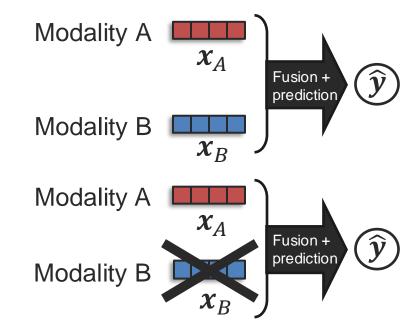
Multimodal co-learning

Unimodal learning

Train

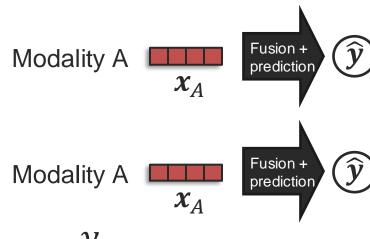
Multimodal data
Multimodal model

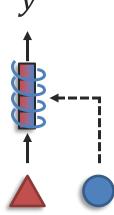
Language-only data
Language-only model
Fill rest by 0s



Only text used at test-time

Multimodal co-learning > language-only training





Co-learning via Fusion

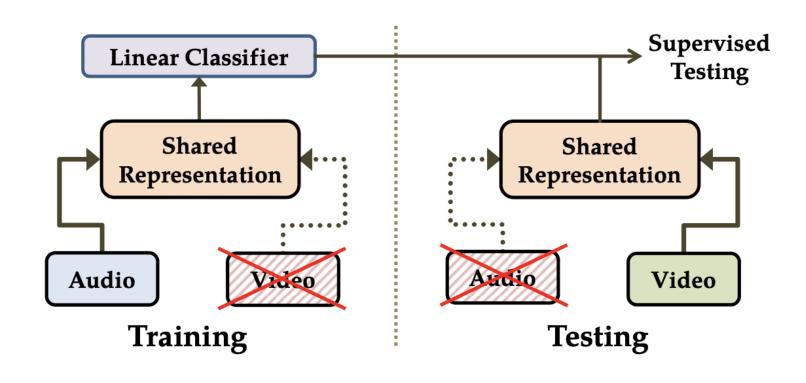
Generative model (Deep Boltzmann Machine) to learn joint representation and infer missing text.

Model	MAP	Prec@50
Image LDA (Huiskes et al., 2010)	0.315	-
Image SVM (Huiskes et al., 2010)	0.375	-
Image DBN	0.463 ± 0.004	0.801 ± 0.005
Image DBM	0.469 ± 0.005	0.803 ± 0.005
Multimodal DBM (generated text)	$\textbf{0.531}\pm\textbf{0.005}$	$\textbf{0.832}\pm\textbf{0.004}$

learning multimodal features helps even when some modalities are absent at test time.

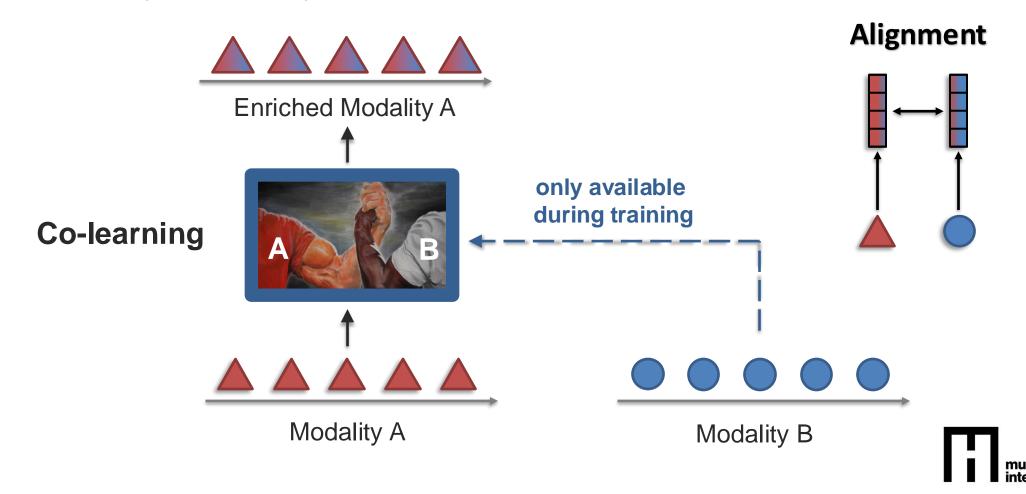
Co-learning via Fusion

Train on some subset of modalities and test on another

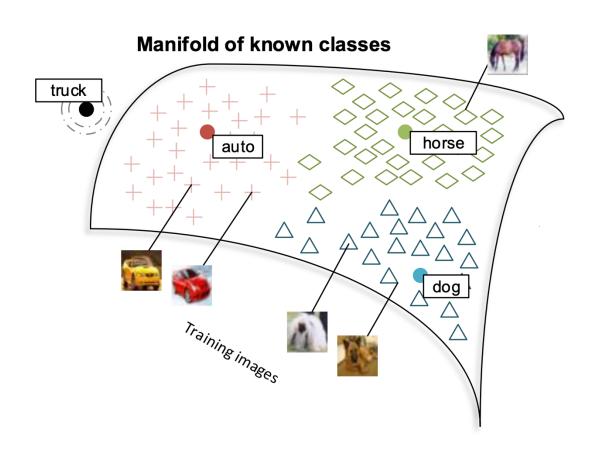


McGurk effect

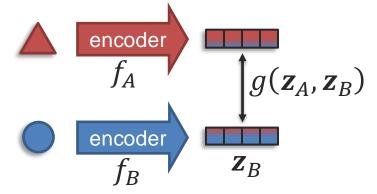
Definition: Transferring information from secondary to primary modality by sharing representation spaces between both modalities.



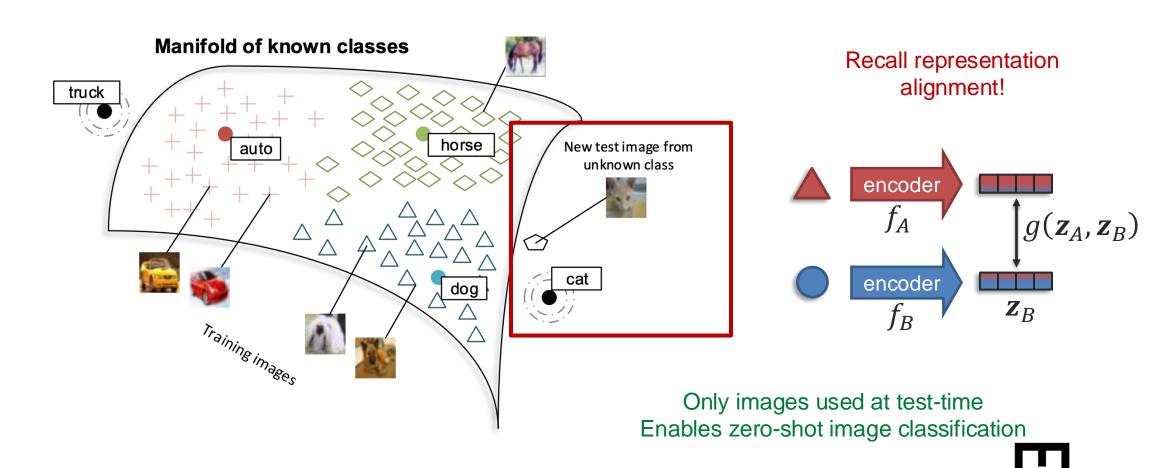
Representation alignment: word embedding space for zero-shot visual classification



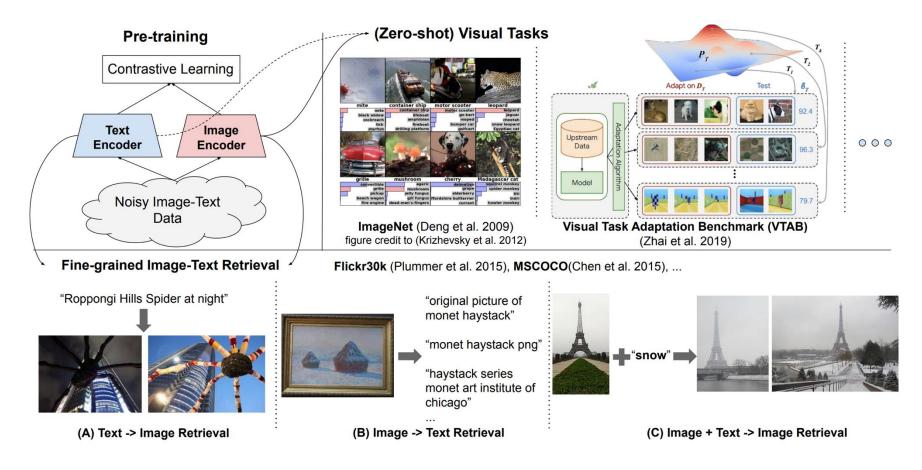
Recall representation alignment!



Representation alignment: word embedding space for zero-shot visual classification

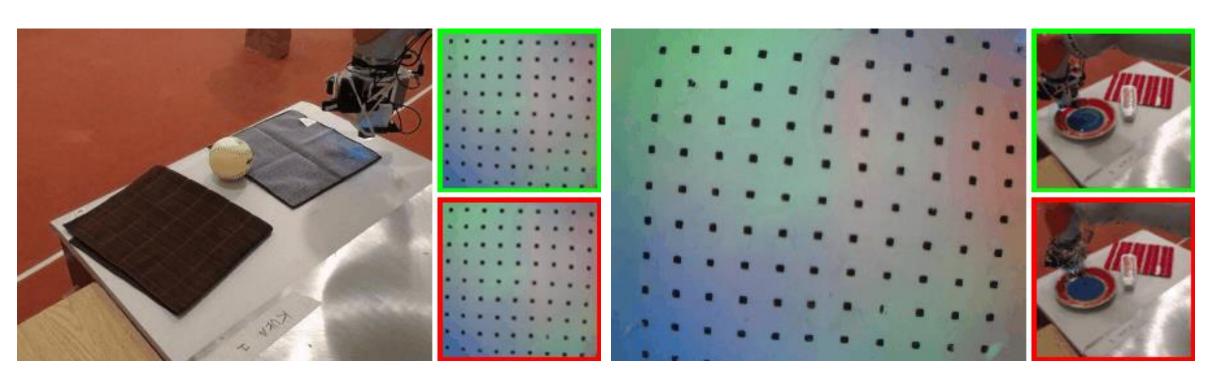


Representation alignment at scale



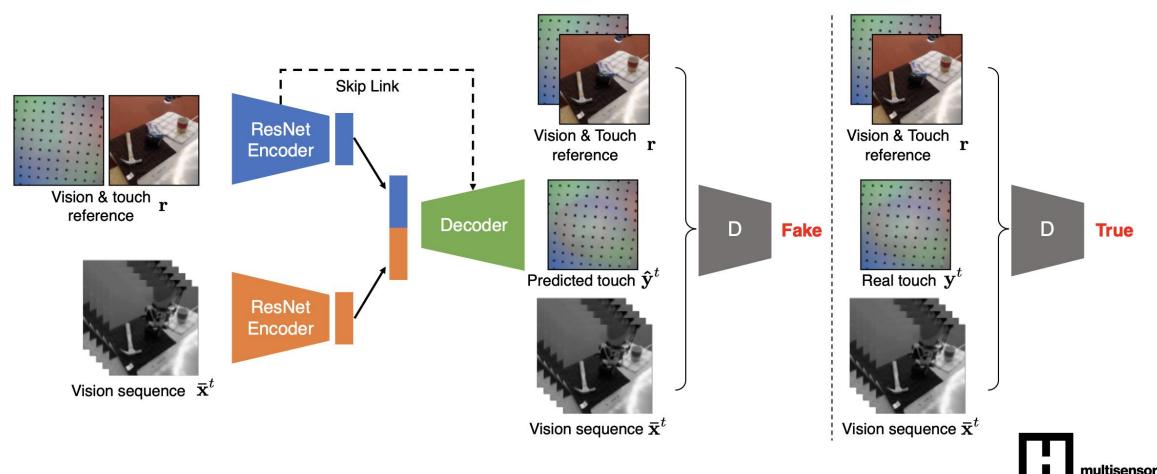
Vision-Touch Alignment

Aligning vision and touch in robotics

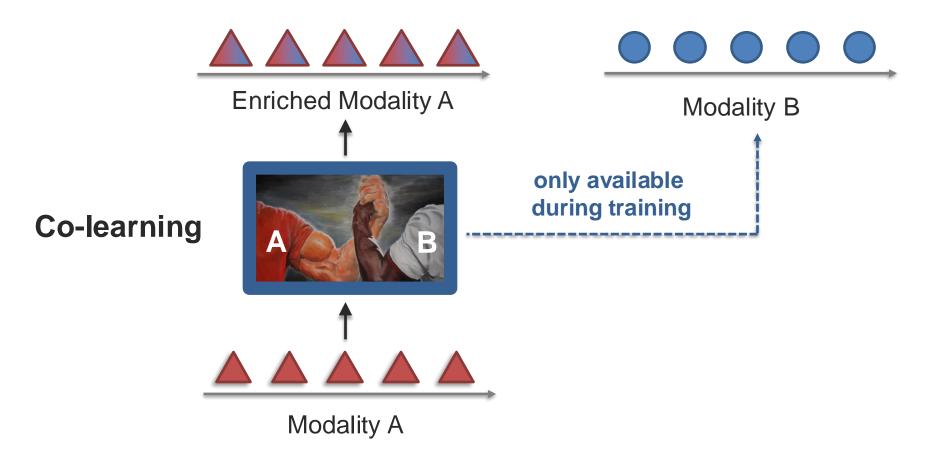


Vision-Touch Alignment

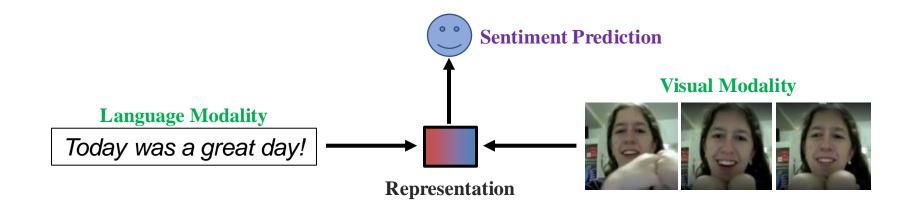
Aligning vision and touch in robotics



Definition: Transferring information from secondary to primary modality by using the secondary modality as a generation target.



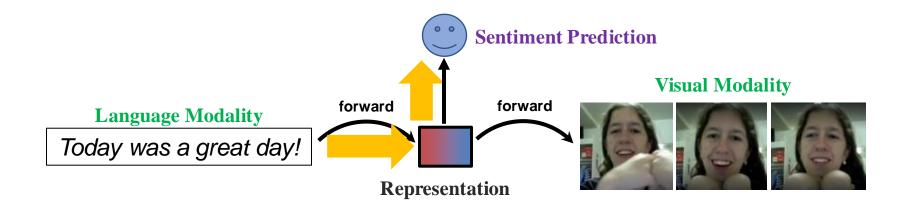
Bimodal translations



Both modalities required at test time! Sensitive to noisy/missing visual modality.

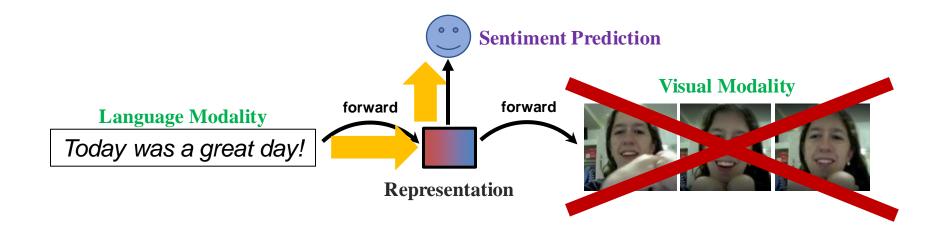
We want to leverage information from visual modality while being robust to it during test-time.

Bimodal translations



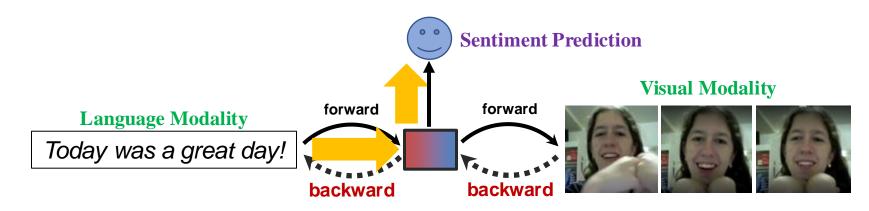
Cross-modal translation during training
Only language modality required at test time!

Bimodal translations



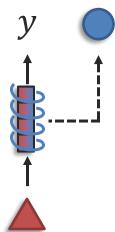
Problem: how do you ensure that both modalities are being used?

Bimodal cyclic translations



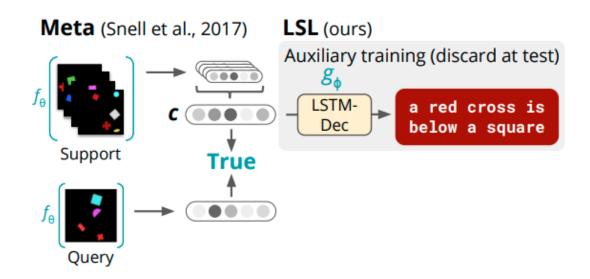
Solution: cyclic translations from visual back to language

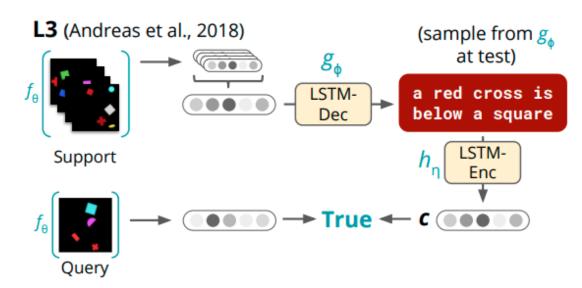
Cross-modal translation during training
Only language modality required at test time!



Co-learning for Compositionality

Image to text translation



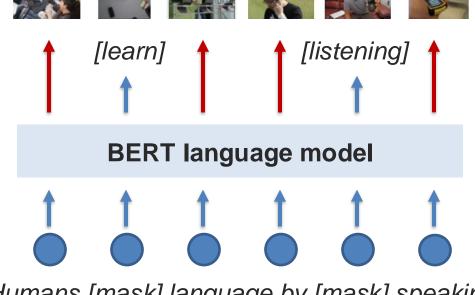


Co-learning for Pre-training

Predicting images from corresponding language

Voken (visual token) classification

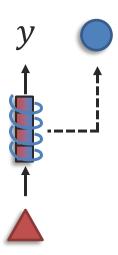
Masked language modeling



Humans [mask] language by [mask] speaking

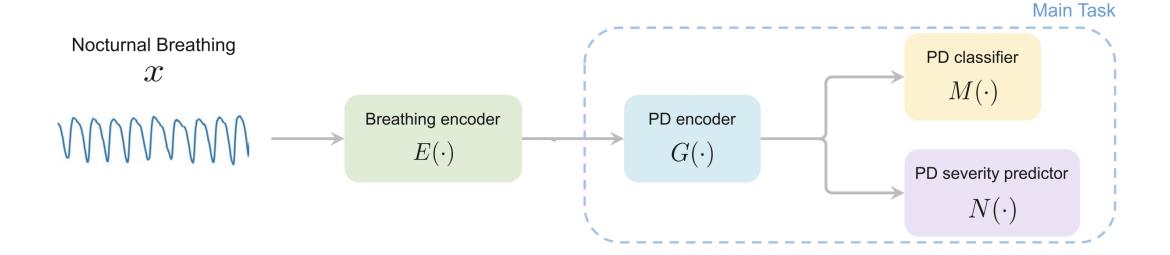
Only text used at test-time

Multimodal co-learning > language-only training



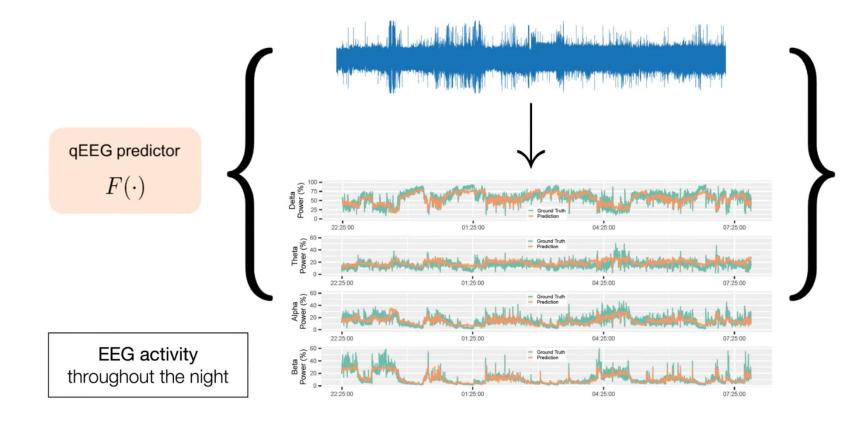
Co-learning for Dense Supervision

10hours of breathing data to detect Parkinson's Disease (PD) – sparse 1 bit signal



Co-learning for Dense Supervision

Predicting paired EEG data as auxiliary task provides dense supervision



Limits of Co-learning

Vision-language pretrained models on lexical grounding

Sentence-level semantic tasks

Encoder	SRL	Coref.	SPR	Rel.
BERT _{base}	90.10 ± 0.20	95.90 ± 0.00	83.70 ± 0.00	76.25 ± 0.05
$\label{eq:VideoBERT} \begin{aligned} & VideoBERT_{text} \\ & VideoBERT_{VL} \end{aligned}$	$84.33 \pm 0.05 \\ 84.73 \pm 0.05$	$\begin{array}{c} 92.47 \pm 0.05 \\ 92.82 \pm 0.05 \end{array}$		$65.83 \pm 0.21 \\ 66.37 \pm 0.80$
VisualBERT _{text} VisualBERT _{VL}	89.00 ± 0.00 89.57 ± 0.21	$\begin{array}{c} 94.87 \pm 0.05 \\ 95.13 \pm 0.05 \end{array}$	$82.27 \pm 0.05 \\ 82.17 \pm 0.09$	$74.37 \pm 0.19 \\ 74.83 \pm 0.05$

Not much improvements with visual co-learning

Semantic Role Labeling "The carrots are then pureed in the food processor" Entity Coreference "After the apples are chopped, put them in the bowl"

Limits of Co-learning

Vision-language pretrained models on seemingly multimodal tasks

Physical commonsense QA

Encoder	Linear	MLP	Trans.
BERT _{base}	55.43 ± 0.31	57.98 ± 0.16	60.12 ± 1.43
VideoBERT _{text} VideoBERT _{VL}	57.87 ± 0.64 58.51 ± 0.20	58.97 ± 0.44 58.56 ± 0.27	$62.35 \pm 1.23 \\ 63.66 \pm 1.31$
VisualBERT _{text} VisualBERT _{VL}	54.81 ± 0.19 55.83 ± 0.27	$56.81 \pm 0.24 59.10 \pm 0.11$	$58.63 \pm 0.79 \\ 61.66 \pm 1.08$

Marginal improvements with visual co-learning

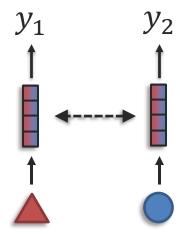
"How to remove gloss from furniture?"

"Rub furniture with steel wool/cotton ball"

Part 3: Model Induction

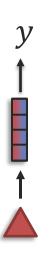
Definition: Keeping individual unimodal models separate but inducing common behavior across separate models.

Model Induction



Self-training

Warmup: a single view – Self-training



Assume:

- 1. Labeled data $\{X_1^L, Y\}$.
- 2. Unlabeled data $\{X_1^U\}$.

Train:

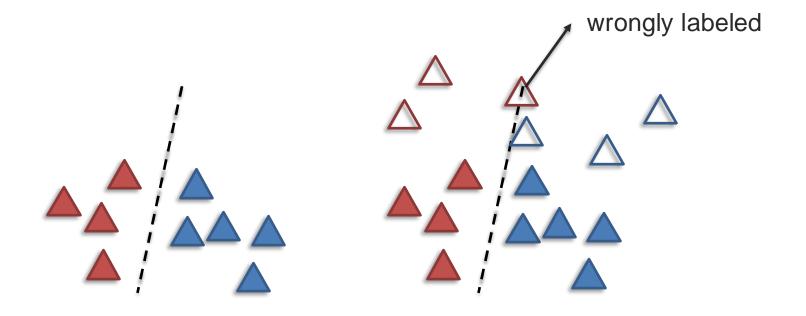
- 1. Train classifier f_1 on $\{X_1^L, Y\}$.
- 2. Use classifier f_1 to label the most confident examples in $\{X_1^U\}$ and add it to the labeled set $\{X_1^U, Y = f_1(X_1^U)\}$.
- 3. Go to 1, and repeat until there are no more unlabeled samples.

Test:

1. For a new unlabeled sample $\{X_1\}$, output $f_1(X_1)$.

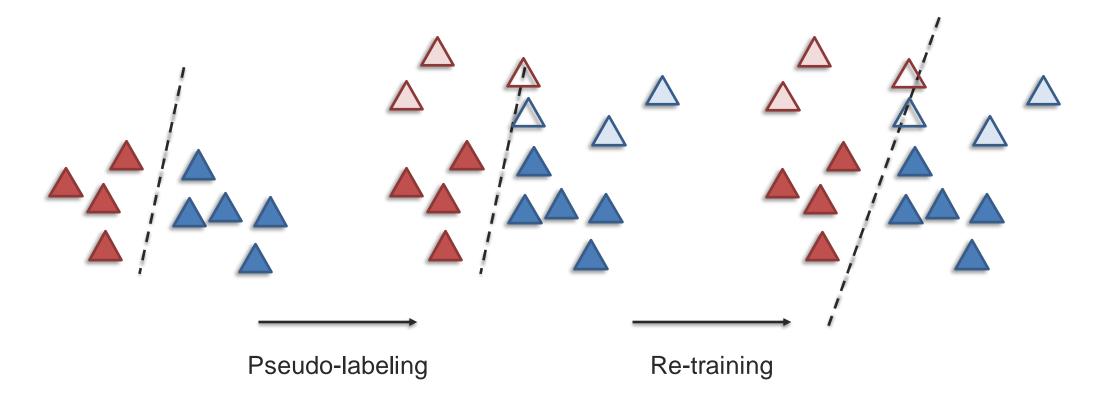
Self-training

Warmup: a single view - Self-training



Self-training

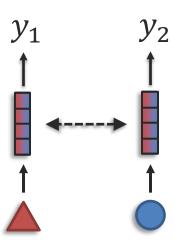
Warmup: a single view – Self-training



Self-training

Self-training

From self-training to co-training



Ingredients:

• Two views on the data: x_1 and x_2

1 Two classifiers: x_1 → y and x_2 → y

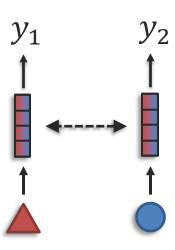
 \blacksquare A bit of labeled data (x_1, x_2, y) ; lots of unlabeled data (x_1, x_2)

Assumptions:

1. Multi-view redundancy: either view is sufficient to predict the label alone, with enough data.

Co-training

Algorithm



Assume:

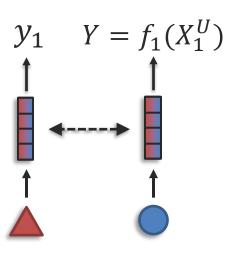
- 1. **Small** amount of labeled data $\{X_1^L, X_2^L, Y\}$.
- 2. **Lots** of unlabeled data $\{X_1^U, X_2^U\}$.

Train:

1. Train classifier f_1 on $\{X_1^L, Y\}$ and f_2 on $\{X_2^L, Y\}$.

Co-training

Algorithm



Assume:

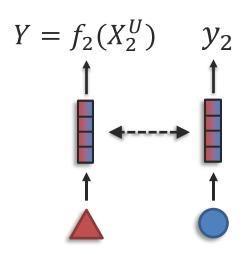
- 1. **Small** amount of labeled data $\{X_1^L, X_2^L, Y\}$.
- 2. **Lots** of unlabeled data $\{X_1^U, X_2^U\}$.

Train:

- 1. Train classifier f_1 on $\{X_1^L, Y\}$ and f_2 on $\{X_2^L, Y\}$.
- 2. Use classifier f_1 to label the most confident examples in $\{X_1^U\}$ and add it to the labeled set to train f_2 $\{X_2^U, Y = f_1(X_1^U)\}$.

Co-training

Algorithm



Assume:

- 1. **Small** amount of labeled data $\{X_1^L, X_2^L, Y\}$.
- 2. **Lots** of unlabeled data $\{X_1^U, X_2^U\}$.

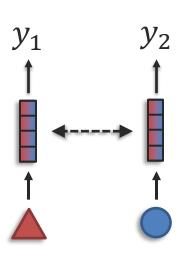
Train:

- 1. Train classifier f_1 on $\{X_1^L, Y\}$ and f_2 on $\{X_2^L, Y\}$.
- 2. Use classifier f_1 to label the most confident examples in $\{X_1^U\}$ and add it to the labeled set to train f_2 $\{X_2^U, Y = f_1(X_1^U)\}$.
- 3. Use classifier f_2 to label the most confident examples in $\{X_2^U\}$ and add it to the labeled set to train f_1 $\{X_1^U, Y = f_2(X_2^U)\}$.
- 4. Go to 1, and repeat until there are no more unlabeled samples.

Test:

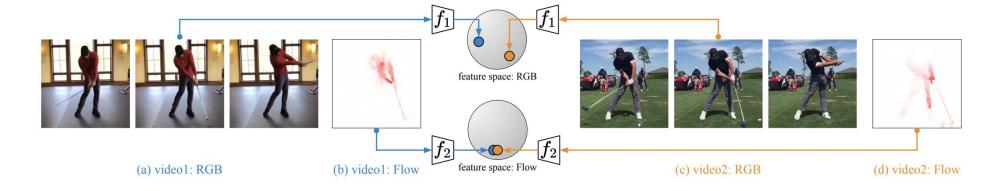
1. For a new unlabeled sample $\{X_1, X_2\}$, ensemble $f_1(X_1)$ and $f_2(X_2)$.

Modern Co-training



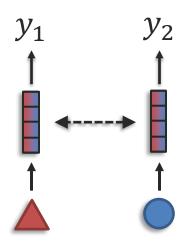
Co-training between RGB and optical flow for activity recognition

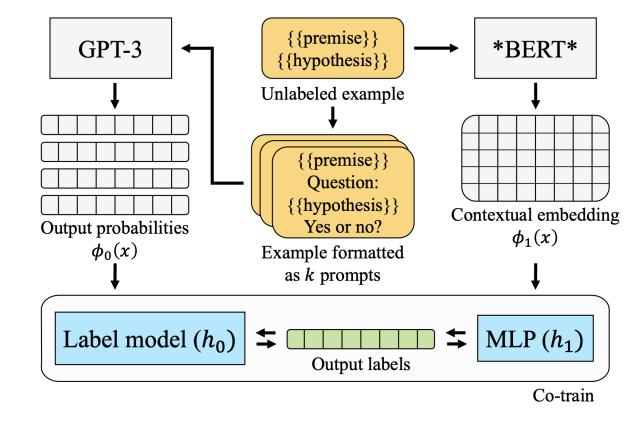
- → Positive samples hard to discover in RGB space can be easily found in flow space, and vice-versa (e.g., RGB sensitive to background differences but not flow).
- → Can use co-training between 2 RGB and flow contrastive learning modules.



Modern Co-training

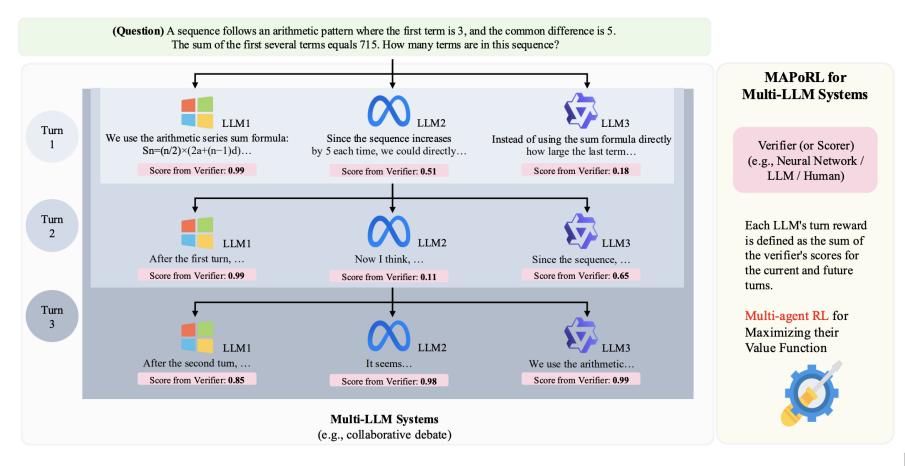
Language-model prompting





Modern Co-training

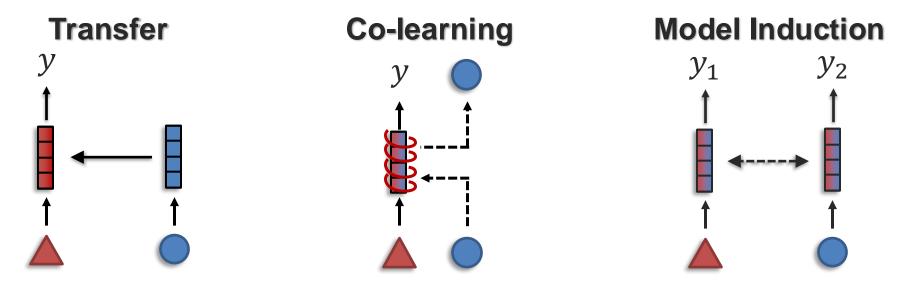
Multi-agent LLMs, debate, co-training



[Park et al., MAPoRL2: Multi-Agent Post-Co-Training for Collaborative Large Language Models with Reinforcement Learning. arXiv 2025] [Du et al., Improving Factuality and Reasoning in Language Models through Multiagent Debate. ICML 2024]

Summary: How to Cross-modal Learning

Definition: Transfer knowledge between modalities, usually to help the primary modality which may be noisy or with limited resources



- 1. Decide on secondary modalities
- 2. Decide on auxiliary input or auxiliary output
- 3. Decide on modifying model or using APIs only

(subject to change, based on student interests and course discussions)

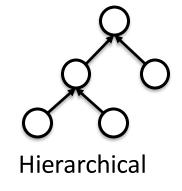
Module 1: Foundations of AI

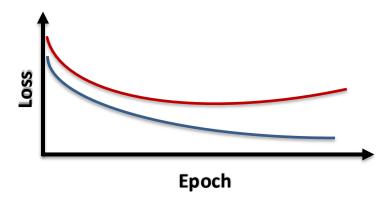
Week 1 (2/4): Introduction to AI and AI research

Week 2 (2/11): Data, structure, and information

Week 4 (2/25): Common model architectures

Spatial





(subject to change, based on student interests and course discussions)

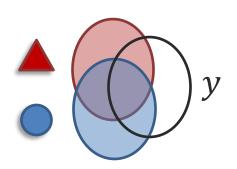
Module 2: Foundations of multimodal AI

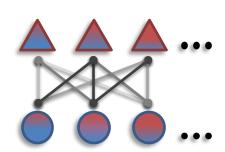
Week 5 (3/4): Multimodal connections and alignment

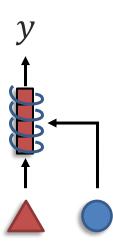
Week 6 (3/11): Multimodal interactions and fusion

Week 7 (3/18): Cross-modal transfer

Week 8 – No class, spring break







(subject to change, based on student interests and course discussions)

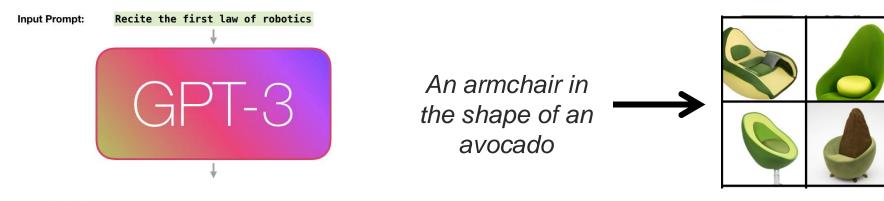
Module 3: Large models and modern Al

Week 9 (4/1): Pre-training, scaling, fine-tuning LLMs

Week 10 – No class, member's week

Week 11 (4/15): Large multimodal models

Week 12 (4/22): Modern generative Al



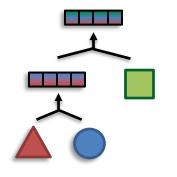
(subject to change, based on student interests and course discussions)

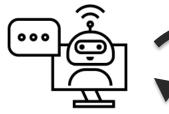
Module 4: Interactive AI

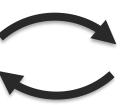
Week 13 (4/29): Interactive Al agents

Week 14 (5/6): Multi-step reasoning

Week 15 (5/13): Human-AI interaction and safety







Assignments for This Coming Week

For project:

- Instructions for midterm assignment posted on piazza
- Midterm report due April 1 (Tuesday), presentations April 3 (Thursday)
- For April 3 (Thursday), class from 1-3pm (we will be flexible when you attend and present)
- Finalized main ideas and experimental setup, have datasets and baseline models working, detailed error analysis, initial progress towards implementing new ideas.

Reading assignment due tomorrow Wednesday (3/19).

This Thursday (3/20): fourth reading discussion on multimodal interactions.

- 1. Ten myths of multimodal interaction
- 2. Mixture-of-experts fusion

